jeudi 31 janvier 2013

Discussion sur l'écoulement du temps, épisode 1: les particules

Je savais que je devrais me lancer un jour ou l'autre dans cet article sur le temps. Le sujet a été traité de nombreuses fois, aussi ai-je longtemps hésité. Et puis surtout, quelque soit la direction prise, je me trouve immanquablement limité par mes connaissances. Aussi, j'aimerais profiter de ce billet pour exposer quelques idées mais aussi pour créer ici une discussion autour de mes interrogations. Je trouverai peut-être des réponses dans les commentaires éclairés de certains! Dans ce cas, je me propose de les incorporer à la discussion dans les autres épisodes.

Un calendrier cyclique Maya

Pour ceux qui ne se sont jamais posé la question


S'il ne vous est jamais arrivé de vous demander ce qu'est le temps, c'est le moment de prendre quelques minutes pour y réfléchir. Comment définiriez-vous le concept de temps? C'est une notion tellement intuitive qu'elle parait évidente. Pourtant, le temps n'a pas une forme universelle, que ce soit d'un point de vue culturel ou physique. Aujourd'hui, nous sommes habitués à représenter le temps comme une ligne allant du passé vers le futur. Mais de nombreuses autres cultures, passées ou contemporaines, envisagent le temps comme un cycle, souvent indéfiniment répété, ou une spirale. Certaines voient même le temps comme une ligne allant du futur vers le passé ! Cette représentation culturelle se mêle à notre perception psychologique du temps. Pour des raisons pratiques, nous avons subdivisé la durée du jour en parts égales, mais cela ne nous empêche pas de trouver certaines heures plus longues que d'autres, comme celles passées devant le film Moonrise Kingdom. 



Nous pourrions dire que le temps est la trame de fond dans laquelle s'inscrivent l'ensemble des événements de l'Univers. C'est une définition large et floue, mais un bon début. Pour les scientifiques aussi, le temps est, comme l'espace, une composante du contexte dans lequel les événements se produisent. Et, comme l'espace est rattaché au support matériel qui le crée (une chambre, une route ou une planète par exemple), le temps est également lié à la matière; c'est les conclusions de la théorie de la relativité générale. Mais il est impossible de mesurer le temps comme on mesure l'espace. On ne peut que mesurer l'écoulement du temps (pour approfondir le sujet, les ressources ne manquent pas, par exemple le classique Une brève histoire du temps de S.Hawking). Pour tenter de substituer à notre perception "psychologique" du temps une base concrète, les scientifiques s'appuient sur certains principes mieux définis (du moins en apparence) : le principe de causalité et l'entropie.

  • Le principe de causalité

Partant de l'idée que le temps nous permet d’appréhender l'Univers et les changements qui s'y produisent, la science a tenté de définir les propriétés du temps. Elle a ainsi emprunté aux philosophes le principe de causalité qui stipule simplement que pour deux phénomènes reliés par un lien de cause à effet, la cause précède l'effet. Ainsi, le temps s'écoule dans le sens où la cause vient avant l'effet, jamais dans l'autre sens. Vous avez pleinement intégré ce principe depuis votre plus jeune âge, et remettre des images dans le bon ordre temporel, même s'il n'a pas assisté aux événements décrits, ne pose aucun problème à un enfant de 7 ans. Ce "sens d'écoulement" est appelé flèche du temps. Ce terme a été introduit en 1927 par l'astrophysicien britannique Arthur Eddington.

  • La flèche du temps et l'entropie

Cette flèche du temps reflète en quelque sorte notre impression psychologique mais surtout une réalité physique ; la plupart des évènements que nous observons se produisent dans un sens mais pas dans l'autre. Par exemple, on peut faire cuire un œuf en le faisant bouillir mais on ne peut pas retrouver l’œuf de départ en le refroidissant. Si l'on mélange deux couleurs de peinture, il est impossible de revenir en arrière. Pourtant, il est rare que les physiciens retrouvent cette flèche du temps dans leurs équations : celles-ci sont très souvent invariantes lorsque l'on change le sens d'écoulement du temps (c'est-à-dire que la transformation décrite par l'équation peut se faire dans un sens ou un autre). Par exemple, il importe peu de savoir si la balle dans le dessin ci-dessous va de gauche à droite ou de droite à gauche. Les points décrits pas la trajectoire sont les mêmes, quelque soit le sens d'écoulement du temps.

C'est là qu'intervient le second principe de la thermodynamique (ou principe de Carnot). Pour comprendre ce principe, il faut d'abord introduire la notion d'entropie.

L'entropie est une grandeur physique assez abstraite, introduite par le physicien allemand Rudolf Clausius en 1865, lorsqu'il reprit les travaux du français Sadi Carnot. Elle fut plus tard interprétée comme une mesure du degré de désordre microscopique d'un système. L'entropie (le "désordre") d'un système a la particularité de ne pouvoir qu'augmenter (ou rester constante à la limite) au cours du temps. Un exemple courant est celui du sirop versé dans de l'eau: une fois que le sirop s'est diffusé et mélangé, les molécules sont dans le désordre le plus total et le système a atteint son entropie maximale. Cette transformation est irréversible : il est impossible de revenir en arrière.

C'est ce que traduit le second principe de la thermodynamique. Il stipule que "toute transformation s'effectue avec une augmentation de l'entropie" et que cette transformation est irréversible. Autrement dit, lorsqu’un système isolé évolue au cours du temps (en subissant diverses transformations), son entropie augmente. On peut par exemple considérer l'entropie d'un glaçon qui fond : au départ, les molécules sont bien rangées en un cristal de glace. Au fur et à mesure que le glaçon passe à l'état liquide, où les molécules sont presque complètement désordonnées, l'entropie augmente grandement. Et le processus est irréversible : même si la température redevient négative, les gouttes d'eau formées ne vont pas reprendre leur place initiale et reconstituer le glaçon d'origine. En fait, l'entropie est la seule chose dont on est absolument sûr qu'elle va, si ce n'est rester constante dans des cas très rares, augmenter avec le temps. Réciproquement, les physiciens ont défini le sens d'écoulement du temps comme celui dans lequel l'entropie augmente irréversiblement.

L'entropie augmente pendant que le glaçon fond
Il faut également comprendre que l'entropie peut diminuer localement si le système échange (de l'énergie, de la chaleur, de la matière..)  avec l'extérieur. Le principe est alors respecté car l'entropie totale de l'Univers augmente. Une image qui me plaît est celle du ménage. Lorsque vous rangez et nettoyez votre appartement, vous diminuez localement le désordre. Mais en faisant le ménage, vous avez aussi dépensé beaucoup d’énergie, brassé des milliards de molécules, fait virevolter des millions de poussières et dégagé de la chaleur, que ce soit avec votre corps ou votre aspirateur, ce qui a eu pour effet d'augmenter considérablement l'entropie de l'appartement ! Même en supposant que vous parveniez à diminuer le désordre microscopique au niveau de votre appartement (en faisant le vide, en refroidissant l'appartement et en virant tout ce qu'il contient), le désordre global de l'Univers (disons votre ville pour rester simple) aura augmenté.

Crédits: Kam's Blog
Une autre illustration, utilisée je crois par Stephen Hawking, est celle des données sur un ordinateur. En stockant et en organisant des données sur un ordinateur, vous créez localement de l'ordre. Mais la dépense d'énergie associée est telle que l'entropie globale de l'Univers a augmenté : le courant électrique utilisé, la chaleur dégagée par votre ordinateur, le flux d'air généré par son ventilateur etc. ont contribué à augmenter le désordre, si ce n'est de l'Univers, de votre maison, d'une quantité bien plus importante que celle de l'ordre apparu sur votre machine.

Bon pour me faire pardonner ces définitions un peu lourdes, voici une petite vidéo sur l'entropie en mode comédie musicale:


Ces deux principes sont relativement faciles à utiliser dans le monde macroscopique où nous vivons, où le temps semble s'écouler de façon continue, toujours au même rythme, toujours dans la même direction. Mais que se passe t-il à l'échelle d'une particule?


L'écoulement du temps au niveau des particules

J'en viens maintenant au sujet de ce premier épisode. Changeons d'échelle pour considérer le monde des particules, où les plus grands objets mesurent quelques angströms seulement (0,0000000001 mètres). Comment une particule perçoit-elle l'écoulement du temps ? Comment sait-elle dans quelle direction pointe la flèche du temps ? Les principes définis auparavant sont ils applicables ?

  • Le monde de l'incertitude

Comme on s'en doute, tout change dans le monde des particules. A cette échelle, c'est la physique quantique qui décrit le comportement des particules. Cette description est presque entièrement statistique et on ne peut que donner une probabilité plus ou moins grande qu'une particule soit dans tel ou tel état.  Pour en savoir un peu plus, vous pouvez lire la section wikipedia consacrée à la physique quantique.

Le monde quantique est également fondamentalement indéterminé : il y a une limite, liée à la nature même de la matière (et non à la précision de nos mesures), à ce que nous pouvons connaitre de l'état d'une particule. Ce fait a été traduit en équations par le physicien allemand W.Heisenberg : son principe d'incertitude pose les limites objectives de notre connaissance du monde quantique. Par exemple, il n'est pas possible de connaitre précisément la vitesse et la position d'une particule. Plus l'on en sait sur la vitesse moins on n'en sait sur la position et inversement.

De même, il n'est pas possible de connaitre parfaitement à la fois l’état énergétique d'une particule et la durée de cet état. Il y a une limite réelle à notre connaissance de l'évolution temporelle d'une particule. Celle-ci est d'autant plus faible que notre connaissance de l'état énergétique du système est grande. Heisenberg a mis en forme cette impossibilité de déterminisme en inégalités. Je montre ci-dessous celle qui lie l'incertitude sur l’énergie à celle sur la "durée de vie du système quantique".


Autrement dit, l'incertitude sur l'énergie multipliée par celle sur le temps est toujours supérieure ou égale à une constante (la constante de Planck réduite). Cette constante est très faible (elle est de l'ordre du milliardième de milliardième de milliardième de milliardième) et n'a absolument aucun impact dans le monde macroscopique. En revanche, elle devient réellement significative à l'échelle des particules.

Comme il est impossible de connaitre de façon absolue l'évolution temporelle de la particule, il devient possible de "violer" le principe de causalité (sans pour autant remettre en question le lien de cause à effet) : un effet peut sembler précéder la cause, sans que l'on puisse savoir d'ailleurs si c'est le cas ou non.

  • Le cas troublant du photon

Le photon, la particule de lumière, est très particulière: elle n'a pas de masse (du moins, c'est ce qui est généralement admis), elle est sa propre antiparticule et surtout rien ne peut voyager aussi vite qu'elle (enfin presque, il existe d'autres particules sans masse qui se déplacent également à la vitesse de la lumière, c'est le cas de certains neutrinos par exemple). Que se passerait-il si vous pouviez chevaucher un photon dans sa course fantastique ? Et bien premièrement, vous constateriez que le temps ne s'écoule plus. La vitesse de la lumière est la vitesse limite pour toutes les particules (du moins, c'est ce qui est généralement admis). Dans le cadre de la théorie de la relativité, plus l'on va vite, plus la vitesse d'écoulement du temps est faible, jusqu'à devenir nulle lorsque l'on atteint la vitesse de la lumière. Un photon n'a donc aucune idée que le temps existe; pour lui, ni le futur ni le passé existent. Ce paradoxe est très largement discuté ailleurs et, même si la question est passionnante, je passe à la suite. J'aurai cependant l'occasion de reparler du photon un peu plus loin, notamment pour évoquer le rapport entre masse et écoulement du temps.

  • L'entropie et la flèche du temps quantique

La notion d'entropie existe également en physique quantique, mais peut-on l'utiliser pour déterminer dans quel sens s'écoule le temps? Les particules échangent de l’énergie par petits paquets indivisibles (les quantas qui ont donné son nom à la physique quantique). L'évolution d'un système n'est donc pas continue mais discrète. De la même façon, l'entropie évolue par paliers, comme une fonction discontinue du temps:
Faut-il alors en déduire que pour les particules, le temps s'écoule aussi par petites tranches?

  • La frontière quantique

Pourquoi les objets de notre quotidien ne se comportent-ils pas de façon "quantique" ? Ils sont pourtant faits d'atomes qui, pris séparément, obéissent aux règles de la mécanique quantique. Il semble que, passé une certaine taille, un système d'atomes devient subitement "classique". Le groupe d'atomes joyeux et imprévisible passe soudainement à un groupe ennuyeux et déterminé (c'est pourquoi votre stylo ne peut pas être en deux endroits en même temps). Le passage d'un comportement "quantique" à un comportement "classique" (c'est à dire macroscopique) est appelé décohérence quantique. Ce phénomène marque la transition entre un état décrit en termes de probabilités, où toutes les possibilités se superposent, à un état unique et défini (ce que l'on observe dans la vie réelle). C'est comme si le système choisissait d'un coup d'être dans tel état, en oubliant toutes les autres possibilités.

Peut on envisager qu'un phénomène analogue se produise au niveau temporel ? Autrement dit, les particules ont elles une flèche du temps propre et "aléatoire" lorsqu'elles sont isolées et une flèche du temps commune lorsqu'elles interagissent entre elles? Dans ce cas, la flèche du temps de l'Univers s'imposerait elle à toutes les particules, comme un torrent impose aux particules d'eau une direction particulière?

Existe t-il un phénomène de décohérence temporelle?

Nous développerons toutes ces fascinantes questions dans le prochain épisode ! Il sera également question d'antimatière, d'intrication quantique et de structure de l'espace-temps!

A quoi ressemble la structure de l'espace temps dans le monde quantique? Crédits: Ptakk

2 commentaires:

  1. L'humain lambda ne perçoit qu'une dimension du temps et trois de l'espace. Ne serait ce là qu'une affaire de perception ?
    Quelqu'un a t il envisagé une notion fractale du temps ?

    RépondreSupprimer
  2. je parlerai d'espace-temps et de temps fractal la prochaine fois :)

    RépondreSupprimer

Membre du c@fé des Sciences

Sweet Random Science sur Pinterest Sweet Random Science sur Youtube g

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes |